

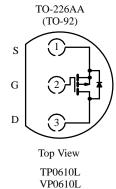
P-Channel Enhancement-Mode MOS Transistors

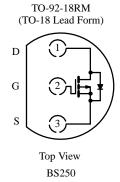
TP0610L VP0610L BS250 TP0610T VP0610T

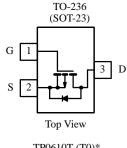
Product Summary

Part Number	V _{(BR)DSS} Min (V)	r _{DS(on)} Max (Ω)	$V_{GS(th)}(V)$	I _D (A)
TP0610L	-60	$10 @ V_{GS} = -10 V$	−1 to −2.4	-0.18
TP0610T	-60	$10 @ V_{GS} = -10 V$	−1 to −2.4	-0.12
VP0610L	-60	$10 @ V_{GS} = -10 V$	−1 to −3.5	-0.18
VP0610T	-60	$10 @ V_{GS} = -10 V$	-1 to -3.5	-0.12
BS250	-45	$14 @ V_{GS} = -10 V$	−1 to −3.5	-0.18

Features


- High-Side Switching
- Low On-Resistance: 8 Ω
- Low Threshold: −1.9 V
- Fast Switching Speed: 16 ns
- Low Input Capacitance: 15 pF


Benefits


- Ease in Driving Switches
- Low Offset (Error) Voltage
- Low-Voltage Operation
- High-Speed Switching
- Easily Driven Without Buffer

Applications

- Drivers: Relays, Solenoids, Lamps, Hammers, Displays, Memories, Transistors, etc.
- Battery Operated Systems
- Power Supply, Converter Circuits
- Motor Control

TP0610T (T0)* VP0610T (V0)* *Marking Code for TO-236

Absolute Maximum Ratings ($T_A = 25^{\circ}C$ Unless Otherwise Noted)

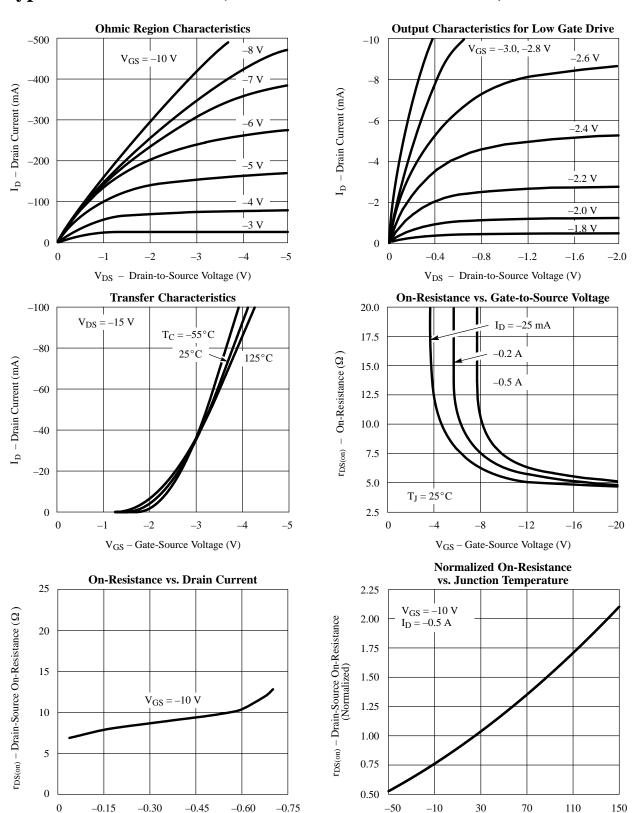
Parameter		Symbol	TP0610L	TP0610T	VP0610L	VP0610T	BS250	Unit	
Drain-Source Voltage		V_{DS}	-60	-60	-60	-60	V	V	
Gate-Source Voltage		V_{GS}	±30	±30	±30	±30		1 '	
Continuous Drain Current	$T_A = 25$ °C	I_	-0.18	-0.12	-0.18	-0.12	-0.18		
$(T_{\rm J}=150^{\circ}{\rm C})$	$T_A = 100 ^{\circ} C$	I_{D}	-0.11	-0.07	-0.11	-0.07		A	
Pulsed Drain Current ^a		I_{DM}	-0.8	-0.4	-0.8	-0.4			
Power Dissipation	T _A = 25 ° C	D_	0.8	0.36	0.8	0.36	0.83	w	
Fower Dissipation	$T_A = 100 ^{\circ} C$	P_{D}	0.32	0.14	0.32	0.14			
Maximum Junction-to-Ambient		R_{thJA}	156	350	156	350	150	°C/W	
Operating Junction & Storage Temperature Range		T_J, T_{stg}	-55 to 150						

Notes

a. Pulse width limited by maximum junction temperature.

Updates to this data sheet may be obtained via facsimile by calling Siliconix FaxBack, 1-408-970-5600. Please request FaxBack document #70209. Applications information may also be obtained via FaxBack, request document #70611.

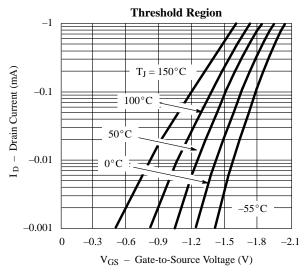
Specifications^a

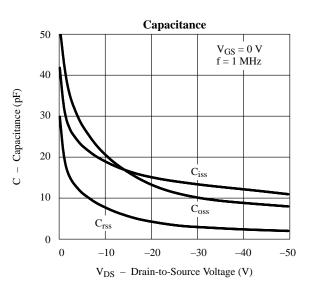

				Limits							
		Test Conditions		Typb	TP0610L/T		VP0610L/T		BS250		1
Parameter	Symbol				Min	Max	Min	Max	Min	Max	Unit
Static											
Drain-Source		$V_{GS} = 0 \text{ V}, I_D = -10 \mu A$	١	-70	-60		-60				
Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = -100 \mu\text{A}$							-45		v
Gate-Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = -1 \text{ m/s}$	1	-1.9	-1	-2.4	-1	-3.5	-1	-3.5	1
		$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20$				±10		±10			
Gate-Body Leakage	I_{GSS}	$T_J = 125$ ° C				±50					nA
		$V_{DS} = 0 \text{ V}, V_{GS} = \pm 15 \text{ V}$								±20	
Zero Gate Voltage		$V_{DS} = -48 \text{ V}, V_{GS} = 0 \text{ V}$				-1		-1			1
Drain Current	I_{DSS}					-200		-200		0.5	μΑ
		$V_{DS} = -25 \text{ V}, V_{GS} = 0 \text{ V}$		100	50					-0.5	
On State Drain Currents	I _{D(on)}	$V_{DS} = -10 \ V, V_{GS} = -4.5$	L	-180 -750	-50		-600		-		mA
On-State Drain Current ^c		$V_{DS} = -10 \text{ V}$ $V_{GS} = -10 \text{ V}$	T	-/30			-220				IIIA
	r _{DS(on)}	$V_{GS} = -4.5 \text{ V}, I_D = -25 \text{ n}$		11		25	220				┼
		$V_{GS} = -10 \text{ V}$	L	8		10		10			1
Drain-Source On-Resistance ^c		$I_{\rm D} = -0.5 \text{ A}$ $T_{\rm J} = 1$	25°C	15		20		20			Ω
on resistance		$V_{GS} = -10 \text{ V}$ $I_D = -0.2 \text{ A}$	Т	6.5		10		10		14	1
		$V_{DS} = -10 \text{ V}, I_D = -0.5 \text{ A}$	L	125	80		80				
Forward Transconductance ^c	gfs	$V_{DS} = -10 \text{ V}$ $I_D = -0.1 \text{ A}$	Т	90	60		70				mS
Diode Forward Voltage	V_{SD}	$I_S = -0.5 \text{ A}, V_{GS} = 0 \text{ V}$		-1.1							V
Dynamic											
Input Capacitance	C _{iss}			15		60		60			
Output Capacitance	C _{oss}	$V_{DS} = -25 \text{ V}, V_{GS} = 0 \text{ V}$ f = 1 MHz		10		25		25			pF
Reverse Transfer Capacitance	C _{rss}			3		5		5			
Switching ^d											
Turn-On Time	t _{ON}	$V_{DD} = -25 \text{ V}, R_L = 133 \Omega$ $I_D \cong -0.18 \text{ A}, V_{GEN} = -10 \text{ V}$		8						10	
	t _{d(on)}			6		10		10			1
	t _r			10		15		15			ns
	t _{OFF}	$R_G = 25 \Omega$	- •	8						10]
Turn-Off Time	t _{d(off)}		7		15		15			_	
	t_{f}			8		20		20			

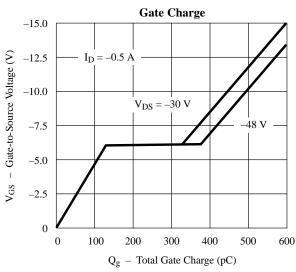
- a. T_A = 25°C unless otherwise noted.
 b. For DESIGN AID ONLY, not subject to production testing.
- c. Pulse test: PW $\leq 300 \,\mu s$ duty cycle $\leq 2\%$.
- d. Switching time is essentially independent of operating temperature.

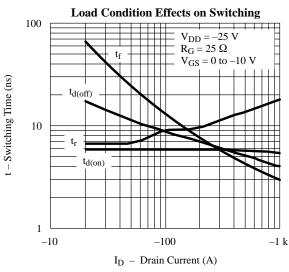
VPDS06

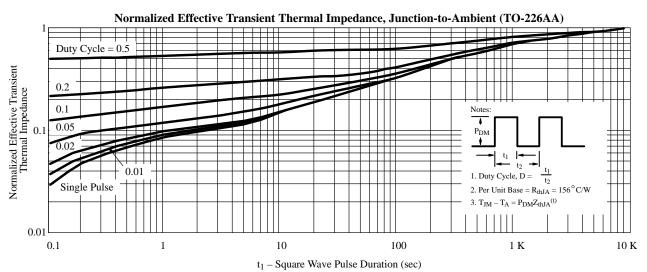
Typical Characteristics (25°C Unless Otherwise Noted)




I_D - Drain Current (A)


T_J - Junction Temperature (°C)


Typical Characteristics (25°C Unless Otherwise Noted) (Cont'd)



4

